Coincidence of magnetic and valence quantum critical points in CeRhIn5 under pressure
نویسندگان
چکیده
منابع مشابه
Magnetic-field control of quantum critical points of valence transition.
We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermed...
متن کاملEffect of pressure on magnetic structure in heavy fermion CeRhIn5
The effect of hydrostatic pressure on the incommensurate antiferromagnetic structure of CeRhIn5 is investigated with neutron diffraction using a He pressure cell. At 3.8 kbar, the staggered magnetic moment is 0.37(4) μB per Ce at 1.6 K, which is the same as the ambient-pressure value. The Néel temperature TN = 3.8(1) K is also the same as the ambient-pressure one, although the curve of order pa...
متن کاملec adoption and critical success factors of ec in smes in iran
تجارت الکترونیکی شیوه اجرای مسئولیتها، تقابل با مشتریان و امور معمول عملیاتی در شرکتها را تغییر داده است. تجارت الکترونیکی در عمل تنها خرید و فروش کالاها را از طریق ابزار الکترونیک نمی باشد، بلکه تمام فعالیتهای لازم جهت انجام فرایند فروش را نیز در بر میگیرد. در اواخر دهه 1990 بسیاری از شرکتها فعالیتهای خود را به منظور دستیابی به مشتریان جدید و یا ارائه فرصتهای جدید به مشتریان موجود گسترش دادند...
Deconfined quantum critical points.
The theory of second-order phase transitions is one of the foundations of modern statistical mechanics and condensed-matter theory. A central concept is the observable order parameter, whose nonzero average value characterizes one or more phases. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics ne...
متن کاملFractionalized Quantum Critical Points
Groundstates of certain materials can support exotic excitations with a charge that’s a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive novel quantum phase transitions, which haven’t yet been observed in realistic systems. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2017
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.96.184524